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Abstract—The formulation and evaluation of the effective phase function for fibrous media with any fiber
orientation are presented based on the assumption that the fibers are infinite cylinders and scattering is in
the independent regime. The phase function is derived in terms of the scattering angle which is the angle
between the incident and the scattered radiation. Unlike spherical particles which scatter radiation into all
directions, radiation scattered by cylindrical fibers only propagates into limited angular ranges. Hence, the
maximum value of the scattering angle for radiation scattered by a collection of fibers depends on the
orientation of the fibers relative to the direction of the incident radiation. For a given fiber orientation
both the angular variation and the maximum scattering angle of the phase function are different for
different incident directions. If the fibers are randomly oriented in space, the angular variation of the phase
function is independent of the incident direction and the maximum scattering angle is 7. The phase function
for fibrous media always exhibits a strong peak in the direction of incident radiation, indicating that the
scattering is highly anisotropic.
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INTRODUCTION

THE INTERACTION of radiation with cylindrical par-
ticles plays an important role in many physical
phenomena, such as in the transmission of radiation
through the atmosphere and in the radiative heat
transfer through fibrous insulation [1-8]. In these
cases the wavelength of radiation is of the same order
of magnitude as the diameter of the cylinders the
lengths of which are much larger than the diameter.
It has been shown that the radiation properties of
finite and infinitely long cylinders becomes almost
identical if the length of the cylinder is much longer
than its diameter [9, 10].

The atmospheric radiation balance and the atmo-
spheric visibility are known to be affected by ice clouds
and cirrus. By modeling the non-spherical ice crystals
as infinite cylinders, the scattering phase function and
the de-polarization factor have been investigated by
Liou {1]. The ice cylinders were assumed to be oriented
in planes. The phase function was shown to vary with
the direction of the incident radiation.

For studies on thermal radiation through fibrous
media, fibers were also modeled as infinite cylinders
[2-8]. Fibers in many insulation materials are woven
in specific directions. Houston and Korpela {2] con-
sidered the case of fibers randomly oriented in space.
The phase function of this type of fibrous medium is
independent of the incident direction. Other studies
[3-5] have generally neglected the effect of fiber orien-
tation on the phase function and on the radiation
heat transfer analyses. However, the extinction and
scattering coefficients of a fibrous medium were shown
to be strongly influenced by the orientations of both
the fiber and the incident radiation [6]. By accounting
for the fiber orientation and the geometry for the
scattered radiation, the single fiber phase function was

employed to develop radiation heat transfer models,
based on the two-flux approximation, applicable to
fibrous media with any fiber orientation [7, §].

Although the influence of fiber orientation on radi-
ation heat transfer has been investigated within the
context of the two-flux model, the accuracy of two-
flux models is limited by the adequacy of the assump-
tion of semi-isotropic distribution for the scattered
radiation. Accurate analysis requires the use of either
Monte-Carlo or discrete ordinate methods. These
approaches require detailed knowledge of the phase
function. However, no analysis has yet been presented
on the phase function for fibrous media which
accounts for the orientation of the fibers.

The scattering phase function for fibrous media
requires special consideration due to the two-dimen-
sional nature of the scattered radiation by cylindrical
fibers. Unlike spherical particles which scatter radi-
ation into all directions in space, radiation scattered
by cylindrical fibers is confined to propagate along a
conic surface [9]. The apex angle of this cone is dic-
tated by the direction of the incident radiation relative
to the fiber axis. Hence, the angular range of the
scattered radiation by a collection of fibers is strongly
influenced by both the fiber orientation and the inci-
dent direction. On the contrary the uni-dimensional
geometry of spherical particles precludes the need to
consider the effect of orientation on the scattering of
radiation.

This paper investigates the influence of fiber orien-
tation on the phase function of fibrous media. The
fibers are modeled as infinite cylinders and the scat-
tering of radiation is assumed to be in the independent
regime. The phase function will be evaluated for
different combinations of the incident direction and
fiber orientation. In the following sections, the phase
function for a single cylinder is first discussed. This

2183



2184 S. C. Lee
NOMENCLATURE
C, scattering cross section Greek symbols
d’F  fiber orientation distribution n angle between incident and scattering
function radiation
i(0,¢) intensity function 0 angle of observation
j J-1 yl wavelength
k imaginary part of m 4 polar angle
m complex index of refraction, n—jk a, scattering coefficient
M total number of weave directions ¢ angle of incidence, |r/2 — ¢.|
n real part of m b half apex cone angle
N(r)dr fiber number size distribution @ azimuthal angle on the plane normal to
P phase function for single cylinder the incident direction
P distribution of the scattered w azimuthal angle
radiation Q solid angle.
P, phase function for fibrous media
r radius of cylinder Subscripts
R unit vector f fiber
X; fraction of fibers oriented in the ith i ,2,....M
polar direction. $ scattered radiation.

is then followed by the consideration of the phase
function for a medium of fibers.

THEORETICAL CONSIDERATION

The scattering of radiation by infinite cylinders
differs significantly from that by finite size particles.
For finite particles such as spheres, the scattered radi-
ation propagates out as spherical waves spanning the
4 steradian solid angle [9]. The scattered radiation
can be observed by placing a detector at any angular
position in space.

The scattering of radiation by finite cylinders is
quite similar to that by spheres [9, 10]. However,
as the aspect ratio (length/diameter) of the cylinder
increases, the scattered waves become increasingly
confined to a surface. When the aspect ratio
approaches 100, the scattered radiation propagates
only along the surface of a cone similar to that for an
infinite cylinder [10]. The half apex angle of the cone
is the angle between the incident direction and the
cylinder axis. The scattered radiation can only be
detected if the detector is inclined from the fiber axis
at an angle equal to the half apex angle of the cone.

Single fiber phase function

Figure 1 depicts the scattering of radiation by an
infinite cylinder at oblique incidence relative to the
fiber. The half apex angle of the cone is ¢, and the
angle of incidence is ¢ = |#/2—¢.|. The azimuthal
angle of the scattered radiation relative to the incident
direction on a plane normal to the fiber axis is denoted
by 0, the angle of observation. The scattering cross
section per unit length of the infinite cylinder is given
by [9]

(@) =nif i(0, ¢)do M

where 4 is the wavelength and i(9, ¢) the intensity
function which depends on both the fiber diameter
and the index of refraction. The intensity function is
derived from the solution of Maxwell's equations for
the interaction of electromagnetic radiation with infi-
nite cylinders [9]. The implicit dependence on the
refractive index m = n—jk, j = ./ —1 has been omit-
ted for brevity. The scattering coefficient is obtained
by integrating C; over the size distribution N(r) dr as

a, = f " CNE) dr @)

which varies with the incidence angle ¢.
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F1G. 1. Scattering of radiation by a single cylinder.
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FI1G. 2. Orientation of a typical fiber in an elemental volume.

The phase function for a single fiber describes the
distribution of the scattered radiation relative to the
fiber coordinates. The amount of scattered energy is
proportional to the scattering cross section of the
cylinder at the incidence angle ¢. The single fiber
phase function can be defined as

2n
p(6,9) = (8, ¢)/J; i(6, ¢)do (3a)
: i(6,
-2 109 c:b) (3b)

which becomes unity when integrated over d8 from 0
to 2x.

Although the phase function for a single fiber is
quite simple and easy to compute, this definition is
difficult to apply to radiative transfer calculations for
fibrous media in which fibers can be oriented in any
direction. It is obvious that for radiation traversing a
collection of fibers, the same value of 6 generally refers
to different directions in space for different orien-
tations of the fibers. The sense of direction of 6 is lost
when describing the scattered radiation by a medium
of fibers. Hence, the phase function for a fibrous
medium must be described in terms of a global coor-
dinate system in which the orientations of the fibers
are specified.

Phase function for a medium of fibers

The phase function for a fibrous medium can be
defined by first considering a fiber oriented with
respect to a global coordinate system X'YZ as depicted
in Fig. 2. The phase function relative to this global
coordinate system is given by [6]

4. i(n, o)

P8 = 2 C oy sinBsin® .

“)
where the scattering angle n is the included angle
between the incident and the scattered radiation. The
half apex angle of the cone of scattered radiation (¢.)
is related to the incident and scattered directions by

cos ¢, = sin & » sin & * cos (0 — wy)

+coséxcosé (Sa)
= sin ¢, »sin ¢ * cos (o, ~wy)
+cosé, »xcosé;  (5b)

where ¢ and w are the polar and azimuthal angles,
and the subscripts s and f refer to the scattered radi-
ation and the fiber, respectively. The expression for n
can be obtained by replacing ¢, &, and w,in equation
(5a) by n, &, and w,, where (¢,,w,) refers to the
direction of the scattered radiation. In addition the
transformation given by

cos H—cos’ ¢,
sin’ ¢,

cosf = 6)
defines the relationship between the scattering angle
n and the angles 6 and ¢, which are specified relative
to a fiber. The effective phase function for a fibrous
medium is strongly influenced by the scattering
characteristics of each fiber. It is obtained by con-
sidering the distribution of radiation scattered by all
the fibers normalized by the effective scattering cross
section of the fibers.

The distribution of the radiation scattered by an
elemental volume of a fibrous medium is obtained by
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integrating the product C,p over the size distribution
and orientations of the fibers. By combining C, with
p in equation (4), the distribution of the scattered
radiation due to radiation traversing the medium in
the direction (£, w) is given by

P ;) = j.zj J; C.pd*FN(r)dr V)

where d”F specifies the orientation of the fibers. This
function P is equivalent to the product of the scat-
tering coefficient and the phase function in the con-
ventional sense. It is unique for each incident direc-
tion.

The effective scattering coefficient for a fibrous
medium can be obtained by integrating the scattered
radiation over all directions. By using the distribution
function of the scattered intensity given by equation
(7), it becomes

l 2n [n
o, (&, w) =;‘;L J; Psinndndeo

=%j Psinndn (8)

0
where 1 and ¢ are regarded as the spherical polar
angles of the scattered radiation relative to the inci-
dent direction, and ¢ the azimuthal angle on the plane
normal to the incident direction.

The effective scattering coefficients can be obtained
alternatively from the single fiber scattering cross sec-
tion defined by equation (2). Hence, it can be evalu-
ated as

6,(& @) = fj J; C.A*FN(Pdr.  (9)

Comparison of o, evaluated from equations (8) and
(9) provides the consistency check for the accuracy of
the numerical values of P.

The scattering phase function in the conventional
sense is obtained by normalizing P with ¢,(¢, ®) as

P w0 = Plo,(,0). (10)

Integrating P, over the scattering solid angle
(dQ = sinndnde) vields 4n. It is re-iterated that P,
is derived based on the assumption of independent
scattering. P, is the effective phase function for a given
distribution of fiber orientation and is independent
of the porosity, i.e. volume fraction, of the fibrous
medium.

Phase function for specific fiber orientations

A closed form expression cannot be obtained for P,
due to its complicated functional dependence.
Numerical evaluation of P, is more convenient and
efficient. In this paper specific attention is devoted to
fibers oriented in discrete polar angles and randomly
oriented in the azimuthal direction. For this type of
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fiber orientation, the orientation distribution function
is

d*F = x,0(&— &) dEd(wr~0)im (11

where é is the Kronecker delia function, x, the frac-
tion of fibers oriented in the polar direction &;. Due
to symmetry the range of w;—w is taken from Q to n
and the normalization factor is n. By applying the
coordinate transformations of equations (5) and (6),
the phase function becomes

44

P, ;) = Po.C.0)

M 7y {cosd, fm2
X ¥ x J. j Gdé d(cos ¢V dr (12)
= r 1]

cos b
where
G =
i(n, §)8(&: — &u)/[(1 —cos n)(cos n —2cos® ¢, +1)] /2
[(cos ¢, —cos dL)(cos ¢ —cos ¢.)] 2

and o, is calculated by using equation (11) in equation
(9). The limits of integration are obtained by using
equation (5a)

(132)
(13b)

cosgp, =cosicosi ~sindsing;
COS Py = cosécosép+sinésin &,

which correspond to |w —e¢| = = and 0, respectively.

The analytical treatment for fibers with specific azi-
muthal orientations is similar, except that a delta func-
tion indicating the azimuthal fiber directions also
needs to be included in the distribution function of
equation (11). In reality fibrous media such as fabrics
may have multiple weave directions, The phase func-
tion would then be evaluated as the summation of the
individual P, corresponding to each combination of
£ and oy for all the weave directions. Hence, the
phase function given by equation (12) is the basic
formula from which the phase function for fibrous
media with more complicated weave patterns can be
derived. The limits of integration for each P, are again
derived from equation (6a).

For the special cas¢ of fibers randomly oriented in
space, d*F is given by cos ¢ d¢. The phase function
then becomes [2, 6}

ry {n/2
P,=jA j C,pcos¢d¢N(r)dr/
r JO
j J C.(¢)cos pde N() dr
= f f ' C.pd(cos 1) () dr/
v SO

r, {1
J J Cdo)d(cos ) N(r) dr  (14)
ry JO

which is independent of the incident angle.
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FIG. 3. Variation of the scattering angle with the half apex
cone angle.

Due to the two-dimensional nature of the scattered
radiation by infinite cylinders, care must be exercised
in integrating equations (12) and (14). In particular,
the geometry of the cone of scattered radiation
imposes strict constraints on the limits of integration
for each scattering angle. The effect of these con-
straints on the limits of integration is discussed below.

Limits of integration and the maximum value of the
scattering angle )

Because radiation scattered by infinite cylinders
propagates along the surface of a cone, the range of
the scattering angle n is fixed for each fiber as depicted
in Fig. 3. The valid scattering region is enclosed by the
line cosn = 1 and the parabola cosn = 2cos’ ¢, — 1.
These boundaries are obtained by setting § equal to 0
and 2z in equation (5). Hence, for a given half apex
angle ¢., the scattering angle n cannot exceed 7,
defined by the intersection of the line of constant
cos ¢, with the parabola. The limits of integration in
equations (12) and (14) correspond to two vertical
lines of constant cos ¢, in Fig. 3. They are not necess-
arily symmetrical about the line cos ¢, = cos £ cos &;
which corresponds to |w; — ;| = =/2 as shown in the
figure. For the special case of fibers randomly oriented
in space, the upper limit of integration is defined by
the locus of the parabola.

For a particular incident direction and fiber orien-
tation, the maximum value of the scattering angle 5.,
is obtained from equations (5) and (6) as

2cost¢, —1
€OS fmax = minimum of { 2(cos £ cos )2 —~1 (15)
2cos? ¢, — 1

which correspond to |w—w| = =, 7/2, and 0, respec-
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FI1G. 4. Scattering phase function for a single cylinder at
A= 1.0 ym.

tively. For the range of 5 < 1, the limits of integration
follow the locus of the parabola. Physically, this
means that only those fibers forming half apex cone
angles smaller than those defined by the boundary of
the parabola can scatter radiation into the angle . The
reduced range of integration denotes that a limited
number of fibers contributes to the scattered radiation
at that angle n.

RESULTS AND DISCUSSION

For the purpose of illustration, the phase functions
given by equations (12) and (14) were evaluated for
glass fibers of 1.0 um radius and at wavelengths of
1.0 and 9.18 um. The optical constants of glass are
m = 1.507 (non-absorbing) at A=1.0 pm and
m = 1.05—1.08j (absorbing) at A = 9.18 um {11].

Figures 4 and 5 show the single fiber phase functions
at various incident angles for 4 = 1.0 and 9.18 um,
respectively. It is re-iterated that the incident and scat-
tering directions are defined with respect to the fiber
coordinates 8 and ¢ as shown in Fig. 1. The scattering
of radiation is symmetrical about the plane containing
the fiber axis and the incident direction. For non-
absorbing fibers (Fig. 4) the phase function shows
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FIG. 5. Scattering phase function for a single cylinder at
4=9.18 um.
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FIG. 6. Scattering phase function for a fibrous medium with
fibers included at 5° from the normal to the planar bound-
aries (4 = 1.0 ym).

more pronounced angular variation than that for
absorbing fibers (Fig. 5).

The phase functions for fibrous media are shown
in Figs. 6-11. Fibers in the medium are assumed to
be all inclined at 5.0°, 45.0°, and 90° from the + Z axis
and are randomly oriented in the azimuthal directions.
For a fibrous medium with multiple discrete polar
fiber directions, the effective phase function is simply
the weighted average of that for fibers oriented in each
direction. The polar angles of the incident radiation
are 6.7°, 33.0°, 59.3°, and 85.6°. In addition, the case
of fibers randomly oriented in space is also considered.
It is re-iterated that in the consideration of a medium
of fibers, all angles are defined with respect to the
global coordinate system which is different from that
for any individual fiber.

The phase functions for radiation at 4 = 1.0 um
incident at different polar angles are shown in Figs.
6-8. The glass fibers are non-absorbing at this wave-
length because the index of refraction is real
(m = 1.57). In Fig. 6 the fibers are inclined at 5.0°
from the normal to the boundaries (+ Z axis) and the
maximum value of the scattering angle 1., is different
for different incident angles. For the incident radiation

3 T : R |
——— 856 deg

) ——- 593 deg 7
e 331 deg

LOG (phase function)

0 30 60 %0 120 150 180
SCATTERING ANGLE, deg

F1G. 7. Scattering phase function for a fibrous medium with
fibers inclined at 45° from the normal to the planar bound-
aries (A = 1.0 ym).
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F1G. 8. Scattering phase function for a fibrous medium with
fibers oriented parallel to the planar boundaries (4 = 1.0
um).

at 6.7°, N 18 23.4°. Therefore, all radiation is scat-
tered into the upper half space, i.e. 0 < 7 < n/2. The
angle 7., increases with larger incidence angles
because the maximum half apex cone angle for indi-
vidual fibers becomes larger. On the other hand, 7,,.,
also increases with higher polar orientation of the
fibers as shown in Fig. 7 for &, = 45.0°. Figure 8 shows
the results for & = 90.0°, i.e. fibers randomly oriented
in planes. In this case the axes of fibers at some azi-
muthal angles are normal to the incident radiation.
Therefore, the maximum scattering angle is = regard-
less of the angle of the incident radiation. The phase
function shows a strong peak in the forward direction,
indicating that the scattering is highly anisotropic.
Figures 9-11 show the phase functions at 2 = 9.18
um for fibers oriented at 5.0°, 45.0°, and 90°, respec-
tively. At this wavelength the index of refraction is
complex (m = 1.05—1.08j) and the fibers are absorb-
ing. The maximum scattering angle 7., for these
phase functions are identical to those at 4 = 1.0 um.
This is, of course, not unexpected because #,,, is
dependent only on the directions of fibers and the
incident radiation. The phase functions display con-
siderably less pronounced angular variation than
those previous cases because the fibers are absorbing.
Smoothing of the angular variation is also evident for

LOG (phase function)

T A=918um g =5 N

-2 ' ‘ |
0 3B 60 90 120 50 180
SCATTERING ANGLE, geg

F1G. 9. Scattering phase function for a fibrous medium with
fibers inclined at 5° from the normal to the planar boundaries
(4 =9.18 um).
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FIG. 11. Scattering phase function for a fibrous medium with
fibers oriented paraliel to planar boundaries (4 = 9.18 um).

a single fiber as shown in Fig. 4. In addition, the phase
functions of absorbing fibers are less peaked in the
forward direction than those of the non-absorbing
fibers.

The phase functions for fibrous media with fibers
randomly oriented in space are shown in Fig. 12. As
evident from physical intuition, these phase functions
are independent of the incident angle and the

LOG (phase function)

0 K} 60 90 120 150 180
SCATTERING ANGLE, deg

F1G. 12. Scattering phase function for fibrous media with
fibers randomly oriented in space for 2 = 1.0 and 9.18 um.
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maximum scattering angle is n. The phase function
for absorbing fibers shows much less angular variation
and is less peaked than that for non-absorbing fibers.

The above results revealed a significant difference
in the phase function between spherical and very long
cylindrical particles. For spherical particles the extinc-
tion and scattering cross sections are independent of
the direction of the incident radiation. The scattered
radiation propagates out as spherical waves which
span the 4r steradian solid angle. Hence, the phase
function depends only on the scattering angle which
is the angle between the incident and the scattered
radiation. For infinite cylindrical particles, however,
the radiative cross sections vary with the incidence
angle. The scattered radiation is two-dimensional and
is confined to the surface of a cone. As a result the
radiative coefficients and the angular variation of the
phase function for a medium of fibers are strongly
dependent on the orientations of both the fibers and
the incident radiation. Only in the special case of fibers
randomly oriented in space are the angular variation
of the phase function and the radiative coefficients
independent of the fiber orientation and the incident
direction.

It is reiterated that the phase function for fibrous
media has been derived in terms of the scattering
angle which is the angle between the incident and
the scattered radiation. However, due to the two-
dimensional characteristics of radiation scattered by
cylindrical fibers, the phase function for fibrous media
cannot be specified solely in terms of the scattering
angle as in the case of spherical particles. Instead the
phase functions depend on the additional parameters
which are the incident direction and the fiber orien-
tation. In the consideration of radiative energy trans-
port through fibrous media, the dependence of the
phase function on the scattering angle must be
expanded in terms of the polar and azimuthal angles
¢ and w of the global coordinate system. The resulting
phase function, which is unique for each incident
direction, is then used in the equation of transfer.

CONCLUSION

Due to the unique two-dimensional nature of the
scattering of radiation by cylindrical fibers, the phase
function for a fibrous medium is generally dependent
on the directions of both the incident radiation and
the fiber orientation. In addition, unlike the phase
function for spherical particles whose maximum scat-
tering angle is always =, the maximum scattering angle
for fibrous media is dictated by the combination of
the incident direction and fiber orientation. For the
special case of fibers randomly oriented in space, the
phase function is independent of the incident direction
and the maximum scattering angle is «.

Although models for diffuse radiative heat transfer
through fibers with any orientation have been
developed based on the phase function for single fibers
[7, 8], their accuracy is limited to the adequacy of the
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two-flux approximation. As illustrated in the present
study, the strong forward peaked phase function for
fibrous media implies that the accuracy of the two-
flux assumption may be questionable. Detailed
knowledge of the phase function allows the evaluation
of the transport of both collimated and diffuse radi-
ation through fibrous media by using more accurate
solution schemes such as the Monte-Carlo or the dis-
crete ordinate methods.
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FONCTION DE PHASE DE DIFFUSION POUR DES MILIEUX FIBREUX

Résumé—On présente la formulation et 'évaluation de la fonction effective de phase pour des milieux
fibreux, 4 orientation quelconque des fibres, 4 partir de I'hypothése que les fibres sont des cylindres infinis
et que la diffusion est dans le régime indépendant. La fonction de phase est obtenue en fonction de I'angle
de diffusion qui est I'angle entre le rayonnement incident et le rayonnement diffusé. A la différence des
particules sphériques dissemblables qui diffusent le rayonnement dans toutes les directions, le rayonnement
diffusé par des fibres cylindriques se propage dans des domaines angulaires limités. Par suite, la valeur
maximale de I'angle de diffusion.pour une collection de fibres dépend de I'orientation des fibres par rapport
a la direction d’incidence. Pour une orientation donnée de fibre, la variation angulaire et I’angle maximal
de diffusion de la fonction de phase sont différents pour différentes directions incidentes. Si les fibres sont
orientées au hasard dans l'espace, la variation angulaire de la fonction de phase est indépendante de la
direction incidente et 'angle maximal de diffusion est n. La fonction de phase pour des milieux fibreux
montre toujours un pic intense dans la direction du rayonnement incident, ce qui indique que la diffusion
est fortement anisotrope.

PHASENFUNKTION DER STREUUNG BEI FASERSTOFFEN

Zusammenfassung—Die Bestimmung der effektiven Phasenfunktion bei Faserstoffen mit beliebiger Faser-
orientierung wird unter der Annahme beschrieben, daB die Fasern unendlich lange Zylinder sind und die
Streuung sich im unabhingigen Bereich befindet. Die Phasenfunktion wird als Funktion des Streu-
winkels—dies ist der Winkel zwischen der einfallenden und der gestreuten Strahlung—abgeleitet. Im
Gegensatz zu kugeligen Partikeln, welche in alle Richtungen streuen, erfolgt die Streuung bei zylindrischen
Fasern nur in einem begrenzten Winkelbereich. Deshalb ist der maximale Streuwinkel bei Streuung an
einer Vielzahl von Fasern abhiingig vom Winkel zwischen einfallender Strahlung und Faserrichtung. Bei
vorgegebener Faserorientierung sind die Verteilung der Streustrahlung und der maximale Streuwinkel
der Phasenfunktion bei unterschiedlichen Strahlungseinfallwinkeln ebenfalls unterschiedlich. Bei einer
zufilligen rdumlichen Anordnung der Fasern ist die Winkelverteilung unabhiingig vom Einfallswinkel der
Strahlung, und der maximale Streuwinkel ist n. Die Phasenfunktion faserfGrmiger Stoffe zeigt immer eine
deutliche Spitze in Richtung der einfallenden Strahlung. Dies zeigt, daBl die Streuung stark anisotrop ist.

OYHKIHUSA ®A3bl PACCEAHHUA BOJIOKHHUCTbI CPEJ

AmnotTamns—POopMyJIHpYeTC ¥ oucHEBaeTc 3ddexTuBHas dasonas QYHKUHA BOJOKHHCTHIX CpeX C
NpPH3BOJILHON OpHEHTANMell BOJIOKOH B MPEANONONKCHHA, YTO OHH NPEACTaBIfIoT coboit Gecxoneunsle
UMHHIDH, a PACCEXHHE OCYWICCTBJNCTCA B HE38BHCHMOM pexmme. ®a3oBas yHKIHA BHPpAaXacTcs
uepes Yro pacCesHis, COCTARICHHLI NaAIOUMM H PACCCRHHBIM H3nydYcHACM. B oTmmune ot chepuuec-
KHMX YACTHLI, PACCCHBAIOIINX HITYICHHE BO BCEX HAMPABJICHANX, H3TYYCHHE OT IMJIHHAPHICCKHX BOJIOKOH
PacIpOCTPAHACTCS JMIIb B OFPaHHYCHHBIX OMANA30HAX Yrja paccesHus. Clef0BATENBHO, MAKCHMAJIb-
HOC 3HAYEHHC YT/IA PAcCeNHHN B CJyJac MATy4eHHA OT Habopa BOJIOKOH 3aBHCHT OT HX OPHCHTALMH
OTHOCHTE/ILHO HaNpasjeHus nagatomero arydesns. [TIpu 3anarHofl OpHEHTAIME BONIOKOH KaK 3aBHCH-
MOCTb OT yTJ1a, TAK H MAKCHMANbHLHA Yron paccesHns ¢asopoit QyHXIHH pa3NHYHM NPH PA3HLIX Hanl-
PaB/ICHAAX MAIAIOUIETO H3NyYcHHA. B clydae NMpOH3BOMLHON OPHEHTAUMH BOJIOKOK B NMPOCTPAHCTBE
ba3oBas QYHKUMA HE 3ABHCHT OT HANPABICHHA NANCHHUA HIMYYCHAA, 3 MAKCHMAILHOC 3HaYCHHC YT/1a
paccesuus coctasiser n. J{na dasosofl GYHKIMA BOJIOXHHCTHIX CPEll XapaKTepeH BLHPAXCHHMA MUK B
HATIPaBJICHHH MANAIOWIEr0 HIMYYEHHS, YTO YK2IBIBACT HAa TO, YTO PACCERHHE SBAACTCA CHIILHO aHH3OT-
PONHBIM.



