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Abstract-The formulation and evaluation of the effective phase function for fibrous media with any fiber 
orientation are presented based on the assumption that the fibers are infinite cylinders and scattering is in 
the independent regime. The phase function is derived in terms of the scattering angle which is the angle 
between the incident and the scattered radiation. Unlike spherical particles which scatter radiation into all 
directions, radiation scattered by cylindrical fibers only propagates into limited angular ranges. Hence, the 
maximum value of the scattering angle for radiation scattered by a coilection of fibers depends on the 
orientation of the fibers relative to the direction of the incident radiation. For a given fiber orientation 
both the angular variation and the maximum scattering angle of the phase function are different for 
different incident directions. If the fibers are randomly oriented in space, the angular variation of the phase 
function is independent of the incident direction and the maximum scattering angle is n. The phase function 
for fibrous media always exhibits a strong peak in the direction of incident radiation, indicating that the 

scattering is highly anisotropic. 

INTRODUCTION 

THE INTERACTION of radiation with cylindrical par- 
ticles plays an important role in many physical 
phenomena, such as in the transmission of radiation 
through the atmosphere and in the radiative heat 
transfer through fibrous insulation [l-8]. In these 
cases the wavelength of radiation is of the same order 
of magnitude as the diameter of the cylinders the 
lengths of which are much larger than the diameter. 
It has been shown that the radiation properties of 
finite and infinitely long cylinders becomes almost 
identical if the length of the cylinder is much longer 
than its diameter [9, lo]. 

The atmospheric radiation balance and the atmo- 
spheric visibility are known to be affected by ice clouds 
and cirrus. By modeling the non-spherical ice crystals 
as infinite cylinders, the scattering phase function and 
the de-polarization factor have been investigated by 
Liou [ 11. The ice cylinders were assumed to be oriented 
in planes. The phase function was shown to vary with 
the direction of the incident radiation. 

For studies on thermal radiation through fibrous 
media, fibers were also modeled as infinite cylinders 
[2-81. Fibers in many insulation materials are woven 
in specific directions. Houston and Korpela [2] con- 
sidered the case of fibers randomly oriented in space. 
The phase function of this type of fibrous medium is 
independent of the incident direction. Other studies 
[3-51 have generally neglected the effect of fiber orien- 
tation on the phase function and on the radiation 
heat transfer analyses. However, the extinction and 
scattering coefficients of a fibrous medium were shown 
to be strongly influenced by the orientations of both 
the fiber and the incident radiation [6]. By accounting 
for the fiber orientation and the geometry for the 
scattered radiation, the single fiber phase function was 

employed to develop radiation heat transfer models, 
based on the two-flux approximation, appiicable to 
fibrous media with any fiber orientation [7, 81. 

Although the influence of fiber orientation on radi- 
ation heat transfer has been investigated within the 
context of the two-flux model, the accuracy of two- 
flux models is limited by the adequacy of the assump- 
tion of semi-isotropic distribution for the scattered 
radiation. Accurate analysis requires the use of either 
Monte-Carlo or discrete ordinate methods. These 
approaches require detailed knowledge of the phase 
function. However, no analysis has yet been presented 
on the phase function for fibrous media which 
accounts for the orientation of the fibers. 

The scattering phase function for fibrous media 
requires special consideration due to the two-dimen- 
sional nature of the scattered radiation by cylindrical 
fibers. Unlike spherical particles which scatter radi- 
ation into all directions in space, radiation scattered 
by cylindrical fibers is confined to propagate along a 
conic surface (91. The apex angle of this cone is dic- 
tated by the direction of the incident radiation relative 
to the fiber axis. Hence, the angular range of the 
scattered radiation by a collection of fibers is strongly 
influenced by both the fiber orientation and the inci- 
dent direction. On the contrary the uni-dimensional 
geometry of spherical particles precludes the need to 
consider the effect of orientation on the scattering of 
radiation. 

This paper investigates the influence of fiber orien- 
tation on the phase function of fibrous media. The 
fibers are modeled as infinite cylinders and the scat- 
tering of radiation is assumed to be in the independent 
regime. The phase function will be evaluated for 
different combinations of the incident direction and 
fiber orientation. In the following sections, the phase 
function for a single cylinder is first discussed. This 
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NOMENCLATURE 

scattering cross section 
fiber orientation distribution 
function 
intensity function 

J-1 
imaginary part of m 
complex index of refraction, n -jk 
total number of weave directions 
real part of m 
fiber number size distribution 

phase function for single cylinder 
distribution of the scattered 
radiation 
phase function for fibrous media 
radius of cylinder 
unit vector 
fraction of fibers oriented in the ith 
polar direction. 

Greek symbols 

9 angle between incident and scattering 
radiation 

e angle of observation 
i. wavelength 

5 polar angle 

6s scattering coefficient 

ZC 

angle of incidence, 1 a/2 - $J, 1 
half apex cone angle 

cp azimuthal angle on the plane normal to 
the incident direction 
azimuthal angle 

: solid angle. 

Subscripts 
f fiber 
i 1,2,...,M 
S scattered radiation. 

is then followed by the consideration of the phase 
function for a medium of fibers. 

THEORETICAL CONSIDERATION 

The scattering of radiation by infinite cylinders 
differs significantly from that by finite size particles. 
For finite particles such as spheres. the scattered radi- 
ation propagates out as spherical waves spanning the 
471 steradian solid angle [9]. The scattered radiation 
can be observed by placing a detector at any angular 
position in space. 

The scattering of radiation by finite cylinders is 
quite similar to that by spheres [9, lo]. However, 
as the aspect ratio (length/diameter) of the cylinder 
increases, the scattered waves become increasingly 
confined to a surface. When the aspect ratio 
approaches 100, the scattered radiation propagates 
only along the surface of a cone similar to that for an 
infinite cylinder [IO]. The half apex angle of the cone 
is the angle between the incident direction and the 
cylinder axis. The scattered radiation can only be 
detected if the detector is inclined from the fiber axis 
at an angle equal to the half apex angle of the cone. 

Singlefiber phase function 
Figure I depicts the scattering of radiation by an 

infinite cylinder at oblique incidence relative to the 
fiber. The half apex angle of the cone is 0, and the 
angle of incidence is 4 = 1x/2-4,]. The azimuthal 
angle of the scattered radiation relative to the incident 
direction on a plane normal to the fiber axis is denoted 
by 0, the angle of observation. The scattering cross 
section per unit length of the infinite cylinder is given 

by [91 

cm = 2 J m 49 de (1) 
0 

where I. is the wavelength and i(O,4) the intensity 
function which depends on both the fiber diameter 
and the index of refraction. The intensity function is 
derived from the solution of Maxwell’s equations for 
the interaction of electromagnetic radiation with infi- 
nite cylinders [9]. The implicit dependence on the 
refractive index m = n-jk, j = J- I has been omit- 
ted for brevity. The scattering coefficient is obtained 
by integrating C, over the size distribution N(r) dr as 

‘1 
fsI = 

i 
C,N(r) dr (2) 

‘I 

which varies with the incidence angle 4. 

SCATTERED 
fWlATlOIl 

---- 

FIG. 1. Scattering of radiation by a single cylinder. 
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‘rypical fiber in the 
scattering volume 

FIG. 2. Orientation of a typical fiber in an elemental volume. 

The phase function for a single fiber describes the 
distribution of the scattered radiation relative to the 
fiber coordinates. The amount of scattered energy is 
proportional to the scattering cross section of the 
cylinder at the incidence angle 4. The single fiber 
phase function can be defined as 

(3b) 

which becomes unity when integrated over d0 from 0 
to 2X. 

Although the phase function for a single fiber is 
quite simple and easy to compute, this definition is 
difficult to apply to radiative transfer calculations for 
fibrous media in which fibers can be oriented in any 
direction. It is obvious that for radiatioh traversing a 
collection of fibers, the same value of 0 generally refers 
to different directions in space for different orien- 
tations of the fibers. The sense of direction of 0 is lost 
when describing the scattered radiation by a medium 
of fibers. Hence, the phase function for a fibrous 
medium must be described in terms of a global coor- 
dinate system in which the orientations of the fibers 
are specified. 

Phase function for a medium ofjibers 
The phase function for a fibrous medium can be 

defined by first considering a fiber oriented with 
respect to a global coordinate system XYZ as depicted 
in Fig. 2. The phase function relative to this global 
coordinate system is given by [6] 

where the scattering angle PJ is the included angle 
between the incident and the scattered radiation. The 
half apex angle of the cone of scattered radiation (4,) 
is related to the incident and scattered directions by 

cos fjC = sin 5 * sin & * cos (0) -or) 

+cos 6 * cos & (5a) 

= sin 5, * sin tr * cos (~9~ -or) 

+cos 5, * cos tr (5b) 

where 5 and o are the polar and azimuthal angles, 
and the subscripts s and f refer to the scattered radi- 
ation and the fiber, respectively. The expression for r) 
can be obtained by replacing &, &, and wr in equation 
(Sa) by ‘I, <,, and w,, where (<,,o,) refers to the 
direction of the scattered radiation. In addition the 
transformation given by 

defines the relationship between the scattering angle 
q and the angles 0 and 0, which are specified relative 
to a fiber. The effective phase function for a fibrous 
medium is strongly influenced by the scattering 
characteristics of each fiber. It is obtained by con- 
sidering the distribution of radiation scattered by all 
the fibers normalized by the effective scattering cross 
section of the fibers. 

The distribution of the radiation scattered by an 
elemental volume of a fibrous medium is obtained by 
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integrating the product C,p over the size distribution 
and orientations of the fibers. By combining C, with 
p in equation (4), the distribution of the scattered 
radiation due to radiation traversing the medium in 
the direction (5, w) is given by 

C,pdlFN(r) dr (7) 

where d”F specifies the orientation of the fibers. This 
function P is equivalent to the product of the scat- 
tering coefficient and the phase function in the con- 
ventional sense. It is unique for each incident direc- 

fiber orientation, the orientation distribution function 
is 

d2F = xJ(& -&)d&d(wr--w)jn (11) 

where 6 is the Kronecker delta function. _r, the frac- 
tion of fibers oriented in the polar direction &_ Due 
to symmetry the range of wr-w is taken from 0 to IL 
and the normalization factor is rr. By applying the 
coordinate transformations of equations (5) and (6), 
the phase function becomes 

Ps(Lw; rt) = 
46 

n3M, w) 
tion. 

The effective scattering coefficient for a fibrous 
medium can be obtained by integrating the scattered 

Gd&d(cos#;)_V(r) dr (12) 

radiation over all directions. By using the distribution 
function of the scattered intensity given by equation 

where 

(7), it becomes G= 

Psinqdqdq 

1 = 
=- s 2 0 

Psinqdq (8) 

where rl and 4, are regarded as the spherical poiar 
angles of the scattered radiation relative to the inci- 
dent direction, and p the azimuthal angle on the plane 
normal to the incident direction. 

The effective scattering coefficients can be obtained 
alternatively from the single fiber scattering cross sec- 
tion defined by equation (2). Hence, it can be evalu- 
ated as 

C,d2FN(r)dr. (9) 

Comparison of (T, evaluated from equations (8) and 
(9) provides the consistency check for the accuracy of 
the numerical values of P. 

The scattering phase function in the conventional 
sense is obtained by normalizing P with o,(<, w) as 

i(rl, K)s(e, - &,)l[( 1 -cos Q)(COS g - 2 cos’ rp; + l)] “2 
[(cos 4ba -cos f&)(cos 4:: -cos 4ci)] Ii2 

and 6, is calculated by using equation (I 1) in equation 
(9). The limits of integration are obtained by using 
equation (5a) 

cos & = cos 2 cos & -sin 5 sin & Wa) 
” ” .I.. 

cos f& = cos < cos cr + sm < an ir (13b) 

which correspond to ]w-wrl = rc and 0. respectively. 
The analytical treatment for fibers with specific azi- 

muthal orientations is similar, except that a delta func- 
tion indicating the azimuthal fiber directions also 
needs to be included in the distribution function of 
equation (11). In reality fibrous media such as fabrics 
may have multiple weave directions. The phase func- 
tion would then be evaluated as the summation of the 
individual P, corresponding to each combination of 
{ri and wfl for all the weave directions. Hence, the 
phase function given by equation (12) is the basic 
formula from which the phase function for fibrous 
media with more complicated weave patterns can be 
derived. The limits of integration for each P. are again 

(10) derived from equation (6;). 
_ - 

For the special case of fibers randomly oriented in 
Integrating P, over the scattering solid angle space, d2F is given by cos 4 d& The phase function 
(dR = sin v + drp) yields 4x. It is re-iterated that P, then becomes [2,6] 
is derived based on the assumption of independent 
scattering. P, is the effective phase function for a given 

‘1 n/Z 

distribution of fiber orientation and is independent 
a, = 

II 
C,p cos # d4 N(r) dr 

‘1 0 i 
of the porosity, i.e. volume fraction, of the fibrous 
medium. 

r2 $2 

ss 
C,(#) cos # d# N(r) dr 

II 0 

Phase function for specific fiber orientations rz I 
A closed form expression cannot be obtained for P, = 

ss 
C,p d(cos Cp:) N(r) dr i 

due to its complicated functional dependence. pi @ 1 

Numerical evaluation of P, is more convenient and ‘2 ’ 
efficient. In this paper specific attention is devoted to 

If 
C,(&) d(cos 46) .V(r) dr (14) 

fibers oriented in discrete polar angles and randomly 
r, 0 

oriented in the azimuthal direction. For this type of which is independent of the incident angle. 
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cos ?j = 2 cos* f#Q -1 1 

FIG. 3. Variation of the scattering angle with the half apex 
cone angle. 

Due to the two-dimensional nature of the scattered 
radiation by infinite cylinders, care must be exercised 
in integrating equations (12) and (14). In particular, 
the geometry of the cone of scattered radiation 
imposes strict constraints on the limits of integration 
for each scattering angle. The effect of these con- 
straints on the limits of integration is discussed below. 

Limits of integration and the maximum value of the 
scattering angIe 

Because radiation scattered by infinite cylinders 
propagates along the surface of a cone, the range of 
the scattering angle q is fixed for each fiber as depicted 
in Fig. 3. The valid scattering region is enclosed by the 
line cos q = 1 and the parabola cos tf = 2 cos’ 4E - 1. 
These boundaries are obtained by setting 0 equal to 0 
and 21~ in equation (5). Hence, for a given half apex 
angle &, the scattering angle q cannot exceed ‘to 
defined by the intersection of the line of constant 
cos 4, with the parabola. The limits of integration in 
equations (12) and (14) correspond to two vertical 
lines of constant cos 4, in Fig. 3. They are not necess- 
arily symmetrical about the line cos 4, = cos 5 cos & 
which corresponds to ]wr - wi] = s/2 as shown in the 
figure. For the special case of fibers randomly oriented 
in space, the upper limit of integration is defined by 
the locus of the parabola. 

For a particular incident direction and fiber orien- 
tation, the maximum value of the scattering angle ftmox 
is obtained from equations (5) and (6) as 

i 

2 cosz &, - 1 

cos rlm.x = minimumof 2(cos5cos~r)z-1 (15) 

2cos2 &- 1 

which correspond to ]o--or] = II, n/2, and 0, respec- 

1.00 

0.00 
‘0 30 60 90 120 150 180 

ANGLE OF OBSERVATION, 9 

FIG. 4. Scattering phase function for a single cylinder at 
A = l.Opm. 

tively. For the range of q < q,,, the limits of integration 
follow the locus of the parabola. Physically, this 
means that only those fibers forming half apex cone 
angles smaller than those defined by the boundary of 
the parabola can scatter radiation into the angle q. The 
reduced range of integration denotes that a limited 
number of fibers contributes to the scattered radiation 
at that angle r~. 

RESULTS AND DISCUSSION 

For the purpose of illustration, the phase functions 
given by equations (12) and (14) were evaluated for 
glass fibers of 1.0 pm radius and at wavelengths of 
1.0 and 9.18 pm. The optical constants of glass are 
m = 1.507 (non-absorbing) at A= 1.0 pm and 
m = 1.05-1.08j (absorbing) at 1 = 9.18 pm [ll]. 

Figures 4 and 5 show the single fiber phase functions 
at various incident angles for I, = 1.0 and 9.18 pm, 
respectively. It is re-iterated that the incident and scat- 
tering directions are defined with respect to the fiber 
coordinates 0 and 4 as shown in Fig. 1. The scattering 
of radiation is symmetrical about the plane containing 
the fiber axis and the incident direction. For non- 
absorbing fibers (Fig. 4) the phase function shows 
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5. Scattering phase function for a single cylinder at 
1 = 9.18 pm. 
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- 85.6 deg 
---59.3 deg 

-21 I I I I I 
0 30 60 90 120 150 180 

SCAllERlNG ANGLE, deg 

FIG. 6. Scattering phase function for a fibrous medium with 
fibers included at 5’ from the normal to the planar bound- 

aries (j. = I .O pm). 

more pronounced angular variation than that for 
absorbing fibers (Fig. 5). 

The phase functions for fibrous media are shown 
in Figs. 6-11. Fibers in the medium are assumed to 
be all inclined at 5.0’, 4.5.0”, and 90‘ from the + 2 axis 
and are randomly oriented in the azimuthal directions. 
For a fibrous medium with multiple discrete polar 
fiber directions, the effective phase function is simply 
the weighted average of that for fibers oriented in each 
direction. The polar angles of the incident radiation 
are 6.7’, 33.0”, 59.3’, and 85.6’. In addition, the case 
of fibers randomly oriented in space is also considered. 
It is re-iterated that in the consideration of a medium 
of fibers, all angles are defined with respect to the 
global coordinate system which is different from that 
for any individual fiber. 

The phase functions for radiation at E. = 1.0 pm 
incident at different polar angles are shown in Figs. 
6-8. The glass fibers are non-absorbing at this wave- 
length because the index of refraction is real 
(m = 1.57). In Fig. 6 the fibers are inclined at 5.0” 
from the normal to the boundaries (+ Z axis) and the 
maximum value of the scattering angle qmax is different 
for different incident angles. For the incident radiation 

3 I ’ t’ I 
- 85.6 deg 

2 --- 59.3 deg 

I X=lym (,=4S0 
I 

-21 I I I I I 
0 30 60 90 120 150 180 

SCATTERING ANGLE, deg 

FIG. 7. Scattering phase function for a fibrous medium with 
fibers inclined at 45’ from the normal to the planar bound- 

aries (j. = I .O pm). 

I / 

E 
- 65.6 deg 
- -- 59.3 deg 
. . . . . 33.0 deg 

----- 6.7 deg 

X=lpm E,=90° 

I I I I I 
30 60 90 120 150 180 

SCAlTERlNG ANGLE, deg 

FIG. 8. Scattering phase function for a fibrous medium with 
fibers oriented parallel to the planar boundaries (j. = 1.0 

pm). 

at 6.7’, q,,, is 23.4’. Therefore, all radiation is scat- 
tered into the upper half space, i.e. 0 < < < 71/2. The 

angle qrnai increases with larger incidence angles 
because the maximum half apex cone angle for indi- 
vidual fibers becomes larger. On the other hand, qmax 
also increases with higher polar orientation of the 
fibers as shown in Fig. 7 for & = 45.0 Figure 8 shows 
the results for Cf = 90.0’, i.e. fibers randomly oriented 
in planes. In this case the axes of fibers at some azi- 
muthal angles are normal to the incident radiation. 
Therefore, the maximum scattering angle is rc regard- 
less of the angle of the incident radiation. The phase 
function shows a strong peak in the fomard direction, 
indicating that the scattering is highly anisotropic. 

Figures 9-11 show the phase functions at i = 9.18 
pm for fibers oriented at 5.0”, 45.0’, and 90’, respec- 
tively. At this wavelength the index of refraction is 
complex (nz = 1.05 - 1.08j) and the fibers are absorb- 
ing. The maximum scattering angle )I,,_ for these 
phase functions are identical to those at i = 1 .O pm. 
This is, of course, not unexpected because qmax is 
dependent only on the directions of fibers and the 
incident radiation. The phase functions display con- 
siderably less pronounced angular variation than 
those previous cases because the fibers are absorbing. 
Smoothing of the angular variation is also evident for 

33.0 deg 
------ 5.7 deg _ 

-1 - X = 9.18 pm E, = 5O 

-2 I 
0 30 60 90 120 i50 180 

SCATTERING ANGLE, oeg 

FIG. 9. Scattering phase function for a fibrous medium with 
fibers inclined at 5’ from the normal to the planar boundaries 

(A = 9.18 pm). 
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- x = 9.16 pm [t = 4P 
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FIG. 10. Scattering phase function for a fibrous medium 
with fibers inclined at 45” from the normal to the planar 

boundaries Q = 9.18 pm). 

1 I I I ‘c’ 
- 65.6 deQ _ 
--- 59.3 deg 
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-20 30 66 90 

I I 
120 150 160 
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FIG. I 1. Scattering phase function for a fibrous medium with 
fibers oriented parallel to planar boundaries (i. = 9,18 pm). 

a single fiber as shown in Fig. 4. In addition, the phase 
functions of absorbing fibers are less peaked in the 
forward direction than those of the non-absorbing 
fibers. 

The phase functions for fibrous media with fibers 
randomly oriented in space are shown in Fig. 12. As 
evident from physical intuition, these phase functions 
are independent of the incident angle and the 

I I I I I 

-21 I I I I I 
0 30 60 90 120 150 160 

SCAllERlNG ANGLE, deg 

FIG. 12. Scattering phase function for fibrous media with 
fibers randomly oriented in space for i. = 1 .O and 9.18 pm. 

maximum scattering angle is II. The phase function 
for absorbing fibers shows much less angular variation 
and is less peaked than that for non-absorbing fibers. 

The above results revealed a significant difference 
in the phase function between spherical and very long 
cylindrical particles. For spherical particles the extinc- 
tion and scattering cross sections are independent of 
the direction of the incident radiation. The scattered 
radiation propagates out as spherical waves which 
span the 4~ steradian solid angle. Hence, the phase 
function depends only on the scattering angle which 
is the angle between the incident and the scattered 
radiation. For infinite cylindrical particles, however, 
the radiative cross sections vary with the incidence 
angle. The scattered radiation is two-dimensional and 
is confined to the surface of a cone. As a result the 
radiative coefficients and the angular variation of the 
phase function for a medium of fibers are strongly 
dependent on the orientations of both the fibers and 
the incident radiation. Only in the special case of fibers 
randomly oriented in space are the angular variation 
of the phase function and the radiative coefficients 
independent of the fiber orientation and the incident 
direction. 

It is reiterated that the phase function for fibrous 
media has been derived in terms of the scattering 
angle which is the angle between the incident and 
the scattered radiation. However, due to the two- 
dimensional characteristics of radiation scattered by 
cylindrical fibers, the phase function for fibrous media 
cannot be specified solely in terms of the scattering 
angle as in the case of spherical particles. Instead the 
phase functions depend on the additional parameters 
which are the incident direction and the fiber orien- 
tation. In the consideration of radiative energy trans- 
port through fibrous media, the dependence of the 
phase function on the scattering angle must be 
expanded in terms of the polar and azimuthal angles 
5 and r.u of the global coordinate system. The resulting 
phase function, which is unique for each incident 
direction, is then used in the equation of transfer. 

CONCLUSION 

Due to the unique two-dimensional nature of the 
scattering of radiation by cylindrical fibers, the phase 
function for a fibrous medium is generally dependent 
on the directions of both the incident radiation and 
the fiber orientation. In addition, unlike the phase 
function for spherical particles whose maximum scat- 
tering angle is always II, the maximum scattering angle 
for fibrous media is dictated by the combination of 
the incident direction and fiber orientation. For the 
special case of fibers randomly oriented in space, the 
phase function is independent of the incident direction 
and the maximum scattering angle is a. 

Although models for diffuse radiative heat transfer 
through fibers with any orientation have been 
developed based on the phase function for single fibers 
[7,8], their accuracy is limited to the adequacy of the 
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FONCTION DE PHASE DE DIFFUSION POUR DES MILIEUX FIBREUX 

Rbum&-On presente la formulation et l’evaluation de la fonction effective de phase pour des milieux 
fibreux, a orientation quelconque des fibres, a partir de l’hypothese que les fibres sont des cylindres infinis 
et que la diffusion est dans le regime independant. La fonction de phase est obtenue en fonction de l’angle 
de diffusion qui est l’angle entre le rayonnement incident et le rayonnement diffuse. A la difference des 
particules sphtriques dissemblables qui diffusent le rayonnement dans toutes les directions, le rayonnement 
diffuse par des fibres cylindriques se propage dans des domaines angulaires limit&s. Par suite, la valeur 
maximale de l’angle de diffusionpour une collection de Iibres depend de l’orientation des fibres par rapport 
ii la direction d’incidence. Pour une orientation don&e de fibre, la variation angulaire et l’angle maximal 
de diffusion de la fonction de phase sont differents pour differentes directions incidentes. Si les fibres sont 
orienties au hasard dans l’espace, la variation angulaire de la fonction de phase est independante de la 
direction incidente et l’angle maximal de diffusion est n. La fonction de phase pour des milieux fibreux 
montre toujours un pit intense dans la direction du rayonnement incident, ce qui indique que la diffusion 

est fortement anisotrope. 

PHASENFUNKTION DER STREUUNG BE1 FASERSTOFFEN 

Zussunmenfassung-Die Bestimmung der effektiven Phasenfunktion bei Faserstoffen mit beliebiger Faser- 
orientierung wird unter der Annahme beschrieben, daD die Fasern unendlich lange Zylinder sind und die 
Streuung sich im unabhingigen Bereich befindet. Die Phasenfunktion wird als Funktion des Streu- 
winkels-dies ist der Winkel zwischen der einfallenden und der gestreuten Strahlung-abgeleitet. Im 
Gegensatz zu kugeligen Partikeln, welche in alle Richtungen streuen, erfolgt die Streuung bei zylindrischen 
Fase.m nur in einem begrenzten Winkelbereich. Deshalb ist der maximale Streuwinkel bei Streuung an 
einer Vielzahl von Fasem abhlngig vom Winkel zwischen einfallender Strahlung und Faserrichtung. Bei 
vorgegebener Faserorientierung sind die Verteilung der Streustrahlung und der maximale Streuwinkel 
der Phasenfunktion bei unterschiedlichen Strahlungseinfallwinkeln ebenfalls unterschiedlich. Bei einer 
zufilligen raumlichen Anordnung der Fasern ist die Winkelverteilung unabhlngig vom Einfallswinkel der 
Strahlung, und der maximale Streuwinkel ist n. Die Phasenfunktion faserfiirmiger Stoffe zeigt immer eine 
deutliche Spitze in Richtung der einfallenden Strahlung. Dies zeigt, daB die Streuung stark anisotrop ist. 
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